Riemann-Roch theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Lehavi
No edit summary
mNo edit summary
 
(24 intermediate revisions by 5 users not shown)
Line 1: Line 1:
In [[algebraic geometry]] the Riemann-Roch theorem states that if <math>C</math> is a smooth [[algebraic curve]], and <math>\mathcal{L}</math> is an [[invertible sheaf]] on <math>C</math> then the the following properties hold:
{{subpages}}
* The [[Euler characteristic]] of <math>\mathcal{L}</math> is given by <math>h^0(\mathcal{L})-h^1(\mathcal{L})=deg(\mathcal{L})-(g-1)</math>
 
In [[algebraic geometry]] the '''Riemann-Roch theorem''' states that if <math>C</math> is a smooth [[algebraic curve]], and <math>\mathcal{L}</math> is an [[invertible sheaf]] on <math>C</math> then the the following properties hold:
* The [[Euler characteristic]] of <math>\mathcal{L}</math> is given by <math>h^0(\mathcal{L})-h^1(\mathcal{L})=\operatorname{deg}(\mathcal{L})-(g-1)</math>
* There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math>
* There is a [[canonical isomorphism]] <math>H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})</math>


= Generalizations =
== Some examples and applications ==
* [[Riemann-Roch for surfaces]] and [[Noether's formula]]
The examples we give arise from considering complete [[linear systems]] on curves. 
* [[Hirzebruch-Riemann-Roch theorem]]
* Any curve <math>C</math> of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then <math>h^0(p)-0=1-(0-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(p))</math> is a degree 1 map, or an isomorphism.
* [[Grothendieck-Riemann-Roch theorem]]
* Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then <math>h^0(2p)-0=2-(1-1)=2</math>; hence the map <math>C\to\mathbb{P}H^0(O_C(2p))</math> is a degree 2 map.
* [[Atiya-Singer index theorem]]
* Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the [[canonical sheaf|canonical class]] <math>K_C</math> is <math>2g-2</math> and therefore <math>h^0(K_C)-h^0(O_C)=2-(2-1)=1</math>; since <math>h^0(O_C)=1</math> the map <math>C\to\mathbb{P}H^0(K_C)</math> is a degree 2 map.
* The [[Riemann-Hurwitz formula]].
 
== Geometric Riemann-Roch ==
[[Image:linsys_quartic.png|300px|thumb|Some linear systems on a smooth cannonicaly embedded genus-3 curve]]From the statement of the theorem one sees that an [[effective divisor]] <math>D</math> of degree <math>d</math> on a curve <math>C</math> satisfies <math>h^0(D)>d-(g-1)</math> if and only if there is an effective divisor <math>D'</math> such that <math>D+D'\sim K_C</math> in <math>Pic(C)</math>. In this case there is a natural isomorphism
<math>\{[H]\in|K_C|, H\cdot C=D'\}\cong\mathbb{P}H^0(D)</math>, where we identify <math>C</math> with it's image in the dual [[canonical system]] <math>|K_C|^*</math>.
 
As an example we consider effective divisors of degrees <math>2,3</math> on a non hyperelliptic curve <math>C</math> of genus 3. The degree of the canonical class is <math>2\mbox{genus}(c)-2=4</math>, whereas <math>h^0(K_C)=2\mbox{genus}(C)-2-(\mbox{genus}(C)-1)+h^0(0)=g</math>. Hence the canonical image of <math>C</math> is a smooth plane quartic. We now idenitfy <math>C</math> with it's image in the dual canonical system. Let <math>p,q</math> be two points on <math>C</math> then there are exactly two points
<math>r,s</math> such that <math>C\cap\overline{pq}=\{p,q,r,s\}</math>, where we intersect with multiplicities, and if <math>p=q</math> we consider the tangent line <math>T_p C</math> instead of the line <math>\overline{pq}</math>. Hence there is a natural isomorphism between <math>\mathbb{P}h^0(O_C(p+q))</math> and the unique point in <math>|K_C|</math> representing the line <math>\overline{pq}</math>. There is also a natural ismorphism between <math>\mathbb{P}(O_C(p+q+r))</math> and the points in <math>|K_C|</math> representing lines through the points <math>s</math>.
 
== History and proofs ==
In 1857 Riemann proved the inequality <math>h^0(O_C(D))\leq \operatorname{deg}(D)-(g-1)</math>; the proof used function theoretic methods on a gluing diagram of a 4g-gon. In 1865 Riemann's student Roch identified the difference in the inequality as the dimension of the cohomology group of differentials with prescribed zeros given by <math>H^0(O_C(K-D))</math>. In the second half of the 19th century, and in the beginning of the 20th century, a huge effort went into making the proof more geometric, and later more algebraic. (i.e. to get a proof over function fields which is independent of the geometric model). The problem in "geometrizing" the theorem is that in the 19th century, curves would always arise as embedded curves in some ambient projective space, and one had to find birationaly invariant definitions for the cohomology groups involved in the theorem. The problem in "algebraizing" the theorem is that one has to define differentials over function fields. In subsequent years the analytic, geometric and algebraic proofs have all been considerably simplified - we list references below. The current "standard" proof is the sheaf theoretic one: using modern tools, the theorem is an immediate consequence of [[Serre's duality]], and the fact that if <math>D,D'</math> are divisors on <math>C</math> then <math>\chi(O_C(D+D'))=\chi(O_C(D))+\chi(O_C(D'))</math>.


= Proofs=
== Generalizations ==
Using modern tools, the theorem is an immediate consequence of [[Serre's duality]].
The generalizations of the Riemann-Roch theorem come in two flavors:
One direction views the Riemann-Roch theorem as a tool to study any linear system on a any curve. [[Clifford's theorem]] gives a better bound on the dimension of special linear systems on curve. If the assumption on the curve is relaxed to be a generic curve, then the [[Brill-Noether Theorem]] and the [[Petri Theorem]] give
good descriptions of the geometry of the linear system.
Another direction of generalization, with more far-reaching consequences, is to view Riemann-Roch as a tool to compute the Euler characteristic of a vector bundle on a Variety. The first generalizations in this direction go back to the beginning of the 20th century with [[Riemann-Roch for surfaces]] and [[Noether's formula]] on surfaces. The next step, taken during the 1960s, is the [[Hirzebruch-Riemann-Roch theorem]], which analyze the Euler characteristic of the canonical bundle of an arbitrary. The final step in the algebro-geometric setting is the [[Grothendieck-Riemann-Roch theorem]], which analyzes the behaviour of the Euler characteristic of vector bundles under pullbacks; e.g. the Riemann-Roch theorem can be deduced from the Grothendieck-Riemann Roch theorem by projecting a curve to a point.
In the analytic setting Grothendieck Riemann Roch had one more generalization: the [[Atiyah-Singer index theorem]].


[[Category:Mathematics Wrokgroup]]
== References ==
[[Category:CZ Live]]
* J. Gray The ''Riemann-Roch theorem and Geometry'' Documenta Mathematica Extra Vo. ICM 1998 III 811-822, available online at [http://www.emis.de/journals/DMJDMV/xvol-icm/19/Gray.MAN.ps.gz] (history)
* E. Arabarello M. Cornalba P. Griffiths and J. Harris ''Geometry of Algebraic Curves'': Volume 1 ISBN 0387909974 (classical geometric proof, many applications and examples)
* P. Grifiths and J. Harris ''Principles of Algebraic geometry'' ISBN 0-471-05059-8 Chapter 2.3 (analytic approach and sheaf theoretic approach, many applications and examples)
* M. Rosen ''Number theory in Function Fields'' ISBN 0-387-95335-3 Chapter 6 (algebraic approach)
* W. Fulton ''Intersection Theory'' ISBN 0387985492 Chapters 15 and 18 (sheaf theoretic approach and generalizations)[[Category:Suggestion Bot Tag]]

Latest revision as of 11:00, 12 October 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In algebraic geometry the Riemann-Roch theorem states that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} is a smooth algebraic curve, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} is an invertible sheaf on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} then the the following properties hold:

  • The Euler characteristic of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{L}} is given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(\mathcal{L})-h^1(\mathcal{L})=\operatorname{deg}(\mathcal{L})-(g-1)}
  • There is a canonical isomorphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0(L)(K_C\otimes\mathcal{L}^\vee)\cong H^1(\mathcal{L})}

Some examples and applications

The examples we give arise from considering complete linear systems on curves.

  • Any curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} of genus 0 is isomorphic to the projective line: Indeed if p is a point on the curve then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(p)-0=1-(0-1)=2} ; hence the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\to\mathbb{P}H^0(O_C(p))} is a degree 1 map, or an isomorphism.
  • Any curve of genus 1 is a double cover of a projective line: Indeed if p is a point on the curve then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(2p)-0=2-(1-1)=2} ; hence the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\to\mathbb{P}H^0(O_C(2p))} is a degree 2 map.
  • Any curve of genus 2 is a double cover of a projective line: Indeed the degree of the canonical class Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K_C} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2g-2} and therefore Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(K_C)-h^0(O_C)=2-(2-1)=1} ; since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(O_C)=1} the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\to\mathbb{P}H^0(K_C)} is a degree 2 map.
  • The Riemann-Hurwitz formula.

Geometric Riemann-Roch

Some linear systems on a smooth cannonicaly embedded genus-3 curve

From the statement of the theorem one sees that an effective divisor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} of degree Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d} on a curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} satisfies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(D)>d-(g-1)} if and only if there is an effective divisor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D'} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D+D'\sim K_C} in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Pic(C)} . In this case there is a natural isomorphism

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{[H]\in|K_C|, H\cdot C=D'\}\cong\mathbb{P}H^0(D)} , where we identify Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} with it's image in the dual canonical system Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |K_C|^*} .

As an example we consider effective divisors of degrees Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2,3} on a non hyperelliptic curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} of genus 3. The degree of the canonical class is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\mbox{genus}(c)-2=4} , whereas Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(K_C)=2\mbox{genus}(C)-2-(\mbox{genus}(C)-1)+h^0(0)=g} . Hence the canonical image of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} is a smooth plane quartic. We now idenitfy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} with it's image in the dual canonical system. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p,q} be two points on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} then there are exactly two points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r,s} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\cap\overline{pq}=\{p,q,r,s\}} , where we intersect with multiplicities, and if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=q} we consider the tangent line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_p C} instead of the line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{pq}} . Hence there is a natural isomorphism between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}h^0(O_C(p+q))} and the unique point in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |K_C|} representing the line Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{pq}} . There is also a natural ismorphism between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}(O_C(p+q+r))} and the points in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |K_C|} representing lines through the points Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} .

History and proofs

In 1857 Riemann proved the inequality Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^0(O_C(D))\leq \operatorname{deg}(D)-(g-1)} ; the proof used function theoretic methods on a gluing diagram of a 4g-gon. In 1865 Riemann's student Roch identified the difference in the inequality as the dimension of the cohomology group of differentials with prescribed zeros given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^0(O_C(K-D))} . In the second half of the 19th century, and in the beginning of the 20th century, a huge effort went into making the proof more geometric, and later more algebraic. (i.e. to get a proof over function fields which is independent of the geometric model). The problem in "geometrizing" the theorem is that in the 19th century, curves would always arise as embedded curves in some ambient projective space, and one had to find birationaly invariant definitions for the cohomology groups involved in the theorem. The problem in "algebraizing" the theorem is that one has to define differentials over function fields. In subsequent years the analytic, geometric and algebraic proofs have all been considerably simplified - we list references below. The current "standard" proof is the sheaf theoretic one: using modern tools, the theorem is an immediate consequence of Serre's duality, and the fact that if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D,D'} are divisors on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi(O_C(D+D'))=\chi(O_C(D))+\chi(O_C(D'))} .

Generalizations

The generalizations of the Riemann-Roch theorem come in two flavors: One direction views the Riemann-Roch theorem as a tool to study any linear system on a any curve. Clifford's theorem gives a better bound on the dimension of special linear systems on curve. If the assumption on the curve is relaxed to be a generic curve, then the Brill-Noether Theorem and the Petri Theorem give good descriptions of the geometry of the linear system.

Another direction of generalization, with more far-reaching consequences, is to view Riemann-Roch as a tool to compute the Euler characteristic of a vector bundle on a Variety. The first generalizations in this direction go back to the beginning of the 20th century with Riemann-Roch for surfaces and Noether's formula on surfaces. The next step, taken during the 1960s, is the Hirzebruch-Riemann-Roch theorem, which analyze the Euler characteristic of the canonical bundle of an arbitrary. The final step in the algebro-geometric setting is the Grothendieck-Riemann-Roch theorem, which analyzes the behaviour of the Euler characteristic of vector bundles under pullbacks; e.g. the Riemann-Roch theorem can be deduced from the Grothendieck-Riemann Roch theorem by projecting a curve to a point. In the analytic setting Grothendieck Riemann Roch had one more generalization: the Atiyah-Singer index theorem.

References

  • J. Gray The Riemann-Roch theorem and Geometry Documenta Mathematica Extra Vo. ICM 1998 III 811-822, available online at [1] (history)
  • E. Arabarello M. Cornalba P. Griffiths and J. Harris Geometry of Algebraic Curves: Volume 1 ISBN 0387909974 (classical geometric proof, many applications and examples)
  • P. Grifiths and J. Harris Principles of Algebraic geometry ISBN 0-471-05059-8 Chapter 2.3 (analytic approach and sheaf theoretic approach, many applications and examples)
  • M. Rosen Number theory in Function Fields ISBN 0-387-95335-3 Chapter 6 (algebraic approach)
  • W. Fulton Intersection Theory ISBN 0387985492 Chapters 15 and 18 (sheaf theoretic approach and generalizations)